PHYSIK III, WS 04/05

Tel. 01 633 20 77

Oliver Portmann

www.microstructure.ethz.ch

portmann@solid.phys.ethz.ch

Serie 5

1. Dielektrizitätskonstante im elektrischen Wechselfeld

Gemäss Vorlesung kann ein gebundenes Elektron als harmonischer Oszillator beschrieben werden. Wie verhält sich die Dielektrizitätskonstante κ als Funktion der Frequenz ω , wenn man das Atom einem oszillierenden Feld $\vec{E}_0 \cdot \cos(\omega t)$ aussetzt?

2. κ für einen Festkörper

Berechnen Sie die Dielektrizitätskonstante κ für einen Festkörper mit einem Atom pro 3 Å und einer Bindungsenergie von $\hbar\omega_0 = 4$ eV.

Dielektrische Platte

Eine unendlich ausgedehnte dielektrische Platte sei parallel zur x-y-Ebene. Entlang der z-Achse sei sie auf den Bereich $-D \le z \le 0$ beschränkt. Berechnen Sie das E-Feld für folgende Fälle:

- a. $\vec{P} = (0, 0, P_0),$
- b. $\vec{P} = (P_0, 0, 0),$
- c. $\vec{P} = (P_0, 0, P_0)$.

Hausaufgaben

4. Polare Moleküle

Führen Sie in einem Gas von polaren Molekülen die Bestimmung der T-Abhängigkeit von κ bei konstantem Druck und Volumen durch. Skizzieren Sie den Verlauf $\kappa(T)$.

5. Dielektrische Kugel

Eine dielektrische Kugel mit Radius R besitze eine homogene, radial gerichtete Polarisation. Berechnen Sie das elektrische Feld für r < R und r > R.